If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-8=41
We move all terms to the left:
2x^2-8-(41)=0
We add all the numbers together, and all the variables
2x^2-49=0
a = 2; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·2·(-49)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{2}}{2*2}=\frac{0-14\sqrt{2}}{4} =-\frac{14\sqrt{2}}{4} =-\frac{7\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{2}}{2*2}=\frac{0+14\sqrt{2}}{4} =\frac{14\sqrt{2}}{4} =\frac{7\sqrt{2}}{2} $
| 2.4(g+1.2)=8.64 | | 16=2(v-4)+4v | | 2a-6-5=-19 | | 9u+1=6u+10 | | 9/4(b)+68/8=35/2 | | -9=-7w+2(w+3) | | 5x-8-8=4x-1-(-5x+x) | | 9/4(h)+68/8=35/2 | | i+13=-27 | | X=5(x+3)=4(x-3) | | -7=d-4 | | -9=-7+2(w+3) | | -9x+2=-4x-43 | | 2a-6-5=19 | | 7(x-6)+2x=-15 | | -2x2-11x+6=0 | | 5(3+8z)=19 | | 9x+9+-9+11x=180° | | 180=68-w | | 2x+3+7x=-23 | | 2x+3+7x=23 | | 19=273-v | | y×0.9=0.36 | | (y+7)/(2)=(y+5)/(1.6) | | 3m+15=4m+12 | | 9=173-v | | -w+14=249 | | -33=9b+5 | | x(4.25+1.90)=20 | | -x+264=11 | | -33=-9b+5b | | (3/4)y-5=7 |